

Gaseous Combustion at Medium Pressures. Part I. Carbon Monoxide-Air Explosions in a Closed Vessel. Part II. Methane-Air Explosions in a Closed Vessel

R. W. Fenning

Phil. Trans. R. Soc. Lond. A 1926 **225**, 331-356 doi: 10.1098/rsta.1926.0008

Email alerting service

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

[331]

VIII. Gaseous Combustion at Medium Pressures. Part I.—Carbon Monoxide-Air Explosions in a Closed Vessel. Part II.—Methane-Air Explosions in a Closed Vessel.

By R. W. FENNING, M.B.E., B.Sc., D.I.C.

Communicated by Dr. T. E. STANTON, F.R.S.

(Received September 5—Read December 3, 1925.)

During the past five years a programme of research involving air-fuel explosions in a closed vessel has been in progress at the National Physical Laboratory for the Engineering Research Board of the Department of Scientific and Industrial Research. Among the experimental results obtained, those relating to Carbon Monoxide and Methane were considered likely to be of interest to the Society, and form the subject of the present communication.

Of the two investigations described, the first gives experimental data on the respective influences of hydrogen-air and water vapour on a carbon monoxide-air explosion, and the second relates to explosions of methane and air over a comparatively wide range of initial temperature and pressure.

PART I.—CARBON MONOXIDE-AIR EXPLOSIONS IN A CLOSED VESSEL, WITH SPECIAL Reference to the Effect of Additions of (a) Hydrogen-Air and (b) Water Vapour.

When BONE and HAWARD published their interesting experiments^{*} showing, *inter* alia, the marked influence of a small proportion of H_2 -air on a CO-air explosion at an initial pressure of 50 atmospheres and at atmospheric initial temperature, it was suggested by the Engine Sub-Committee of the Aeronautical Research Committee that a similar series of experiments, at initial pressures corresponding to engine conditions, should be put in hand at the National Physical Laboratory. Mr. H. T. TIZARD made the further suggestion that, at the same time, the effect of water vapour additions to a CO-air mixture should be investigated.

In carrying out these suggestions three series of explosions were performed at an initial pressure of $76 \cdot 8$ lbs. per square inch (absolute), and at an initial temperature of 50° C., a pressure-time record being obtained of each explosion.

The mixtures in the respective series were :---

(1) $2(mH_2 + nCO) + O_2 + 3 \cdot 8N_2$, where *m* and *n* are variable, but m + n = 1; water vapour content less than 1 in 2000.

* 'Roy. Soc. Proc.,' A, vol. 100 (1921). VOL. CCXXV.—A 633. 2 Y

[Published, January 5, 1926.

The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to

Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character.

(2) $2CO + O_2 + 3 \cdot 8N_2$, with water vapour additions varying from $0 \cdot 3$ to $2 \cdot 4$ volumes per 100.

(3) A repetition and extension of (1), including the addition of $1 \cdot 2$ volumes of water vapour per 100 of mixture.

Apparatus and Experimental Procedure.

(1) The Explosive Mixture.—The comparatively dry explosive mixture was prepared in bulk in a high-pressure gas cylinder and drawn off as required for explosion in an electrically heated steel vessel (7 ins. diameter by 8 ins. long—surface corroded—vide fig. 1) provided with a spark gap ($\frac{1}{2}$ mm.) at the centre and fitted with a manometer (vide fig. 2) for giving a pressure time record of the explosion.*

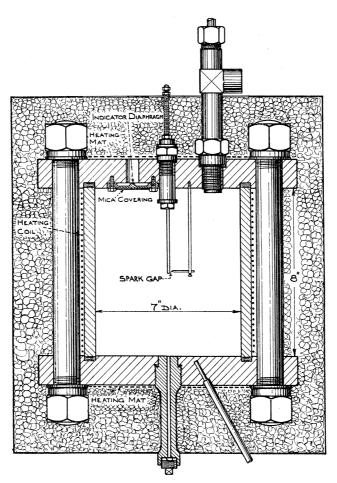


FIG. 1.—Mild-steel explosion vessel.

By using two mixing cylinders, one of which contained a "complete combustion" mixture of hydrogen and air, and the other a similar mixture of carbon monoxide and

* For further details of apparatus reference should be made to 'Aeronautical Research Committee Reports and Memoranda,' No. 902 (H.M. Stationery Office).

air, further "complete combustion" mixtures of these mixtures could readily be obtained by making successive additions to the CO-air cylinder from the H_2 -air cylinder. Thus, at the start of a series, separate H_2 -air and CO-air mixtures were available for the separate H_2 -air and CO-air explosions and, at the finish, sufficient H_2 -air mixture remained for further explosions of that mixture to check the constancy of the recording apparatus.

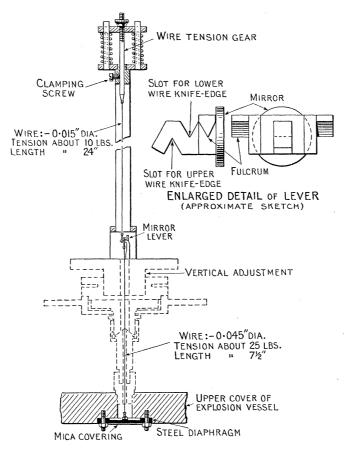


FIG. 2.—Optical indicator.

The primary CO-air and H_2 -air mixtures were made up at an initial pressure of about 17 atmospheres, and were sampled, analysed and adjusted until of the desired "complete combustion" composition. The subsequent mixtures of these mixtures were analysed and their composition determined from a mean of the analysis and pressure-mixing figures.

As to humidity, the mixtures were comparatively dry, as they were prepared largely from high-pressure gases, the water vapour content being estimated at less than 1 in 2000 (by volume). In the text such mixtures are sometimes referred to as "dry," to distinguish them from those to which water vapour additions were made.

The carbon monoxide was kindly supplied by Prof. BURSTALL (Birmingham University), who states that the gas was prepared by the well-known method of adding formic acid

to strong sulphuric acid. The process was carried out in electrically heated silica flasks, and the gas generated was cooled, scrubbed with sodium hydrate, passed through two washing flasks to an iron gas-holder, then compressed into storage cylinders to about 120 atmospheres pressure. The consignment used for these experiments was analysed, after receipt, and its composition appeared to be :—

	Per cent.
CO	$97 \cdot 3$
H_2	$0\cdot 2$
CO ₂	$0 \cdot 2$
O ₂	$0\cdot 4$
N_2 (by difference)	$1 \cdot 9$
	100.0
	$100 \cdot 0$

As the gas was by no means odourless, but had a smell suggesting acetylene, it was tested for C_2H_2 (and other heavy hydrocarbons) by fuming sulphuric acid, but no appreciable amount was detected. For the hydrogen determination it was necessary to analyse comparatively large volumes of the CO; in four cases 170 c.c. were taken and in one case 680 c.c. After absorbing the CO and O_2 by a hydrochloric acid solution of cuprous chloride, the remnant gases were treated with caustic potash—supplied with oxygen in the form of air—and passed over palladium in order to remove the hydrogen by fractional combustion. Successive determinations gave values decreasing from 0.33 per cent. to 0.13 per cent.

A confirmation of the CO analysis was sought by exploding CO-air mixtures of varying strength in a small glass explosion vessel and noting the contraction in volume and the CO_2 formed, but the former measurement exceeded that due to the oxidation of the CO and small volume of H_2 by from 0 to nearly 3 per cent. This effect may be due to the formation of oxides of nitrogen.

For the H_2 -air mixtures, the hydrogen was the same as that used in previous work and was a particularly pure sample supplied by the British Oxygen Company. The original analysis showed a purity of about 99.5 per cent.

When water vapour was added to the mixture the addition was made to each explosion vessel charge, the apparatus illustrated in fig. 3 being used. The procedure in this case was to charge the explosion vessel to atmospheric pressure with "dry" mixture (valve A being closed), couple up the water vessel containing the weight of water to be evaporated, set dry mixture flowing slowly through junction box into the explosion vessel, open valve A and apply Bunsen burner to evaporate the water, close valve A and charge the vessel rapidly with dry mixture, until within a pound or two of the desired pressure, making the final pressure adjustments slowly.

The junction box, to which the water vessel was coupled and through which the "dry" mixture flows on its way to the explosion vessel, was maintained at about

110° C. The slow flow of mixture during the evaporation was designed to carry the water vapour into the explosion vessel, and the subsequent rapid flow to cause sufficient turbulence to mix water vapour and "dry" gas. Although the method was by no means perfect for obtaining a homogeneous mixture, it gave fairly consistent results and appeared to be sufficiently accurate for the purpose.

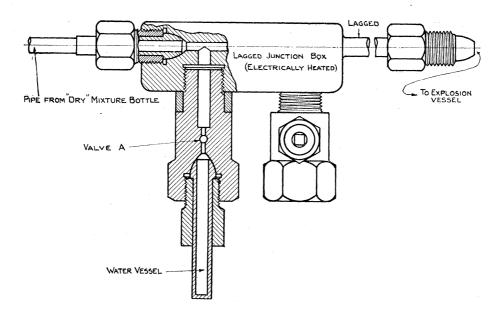


FIG. 3.—Apparatus for introducing water vapour.

Of the three series of explosions carried out, the first consisted of comparatively dry "complete combustion" mixtures of H_2 and air and of CO and air and of mixtures of these, the approximate mixture compositions being :---

	p	er cent.	per cent.	per cent.	per cent.	per cent.	per cent.	per cent.
H_2 -air	•••	100	$0\cdot 2$	$4 \cdot 1$	$8 \cdot 0$	$11 \cdot 9$	$24 \cdot 8$	$49 \cdot 7$
CO-air	• •	0	$99 \cdot 8$	$95 \cdot 9$	$92 \cdot 0$	$88 \cdot 1$	$75 \cdot 2$	$50 \cdot 3$

These mixtures were exploded at an initial pressure of $76 \cdot 8$ lbs. per square inch (absolute) and at an initial temperature of 50° C., and pressure-time records obtained.

In the second series an explosion of nearly dry CO-air mixture was followed by explosions of the same mixture to which varying amounts of water vapour had been added —the initial pressure and temperature being the same as in the first series. The water vapour addition per 100 volumes of "dry" mixture varied from 0.3 to 2.56 volumes, but since the charge would be completely saturated by 2.38 volumes—the latter figure represents the maximum water vapour content before explosion.

Finally, a third series of explosions was put through for the purpose of checking the

first series and of obtaining information on the effect of a constant water vapour addition to mixtures of CO-air and H_2 -air. The mixture range was also extended to include

							Per cent.
H_2 -air	••	••	••	••	• •	••	$2 \cdot 2$
CO-air	••	••	••	••	••	••	$97 \cdot 8$

(2) Pressure-Time Explosion Records.—To record the pressure a solid-rimmed steel diaphragm was fitted flush with the inner surface of the cover of the explosion vessel. The diaphragm deflection—magnified over 1000 times—was recorded on sensitised paper, attached to a rotating drum having a peripheral speed of about 1 metre a second. In order to protect the diaphragm from temperature distortion during the early part of the explosion and cooling, a mica and thin sheet-metal cover was provided. As the maximum diaphragm deflection was of the order of a couple of thousandths of an inch, inertia effects were eliminated. The manometer was calibrated—*in situ*—against a standard pressure gauge, compressed air being used for the purpose. The high-frequency vibration (about 1100 per second) shown on some of the Records (vide No. 558, fig. 5) is the natural period of the optical lever under the action of the two strained wires. The time-scale was indicated automatically on the cooling curves by means of tuning-fork interceptions of the light.

Experimental Results.

The results of the first series are given in Table I, and superimposed pressure-time records are shown in fig. 4. Parts of the actual records (they are too long for complete reproduction) have been reproduced photographically to a reduced scale in fig. 5.

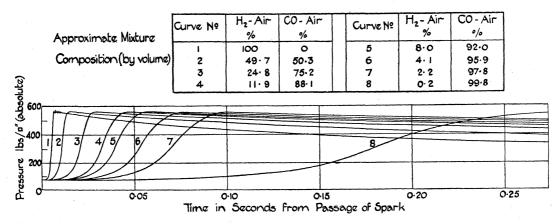
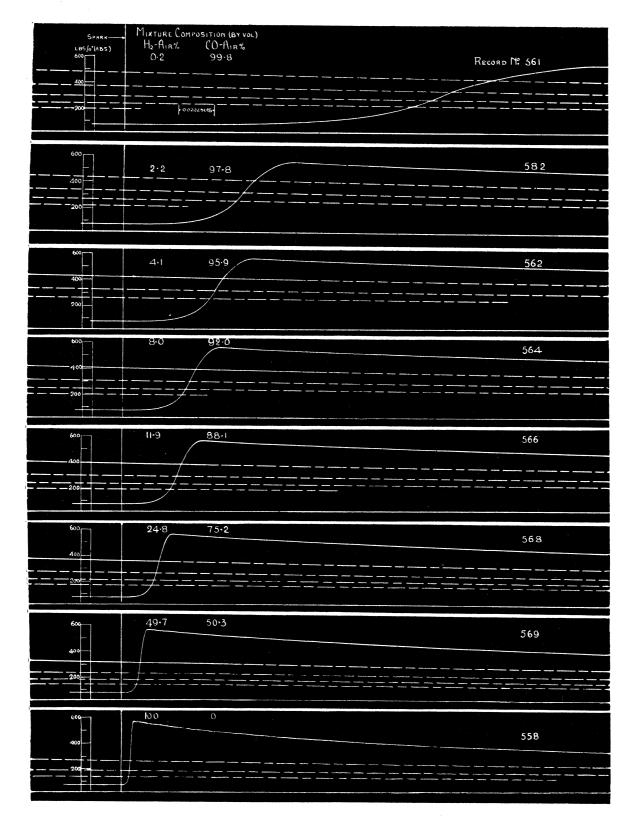



Fig. 4.—Superimposed pressure-time records of "dry" mixtures of H_2 -air and CO-air.

Table II applies to the second and third series. Superimposed explosion records of the second series are given in fig. 8. One record of the third series, that for the $2 \cdot 2$ per cent. H₂-air, is included in figs. 4 and 5.

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

The bracketed figures given in Tables I and II for the H_2 -air explosions should be taken together; they indicate that a pressure very slightly less than the maximum was reached about 1/1000 seconds before the recorded maximum.

(I) Effect of H_2 -Air Additions to a CO-Air Mixture, the Mixture being Comparatively Dry. (a) "Explosion Time."—The influence of H_2 -air additions to a CO-air mixture is clearly seen in figs. 4, 5 and 6.

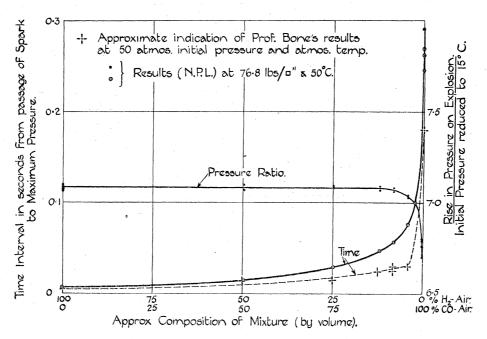


FIG. 6.—Effect of addition of H₂-air to a nearly dry CO-air mixture.

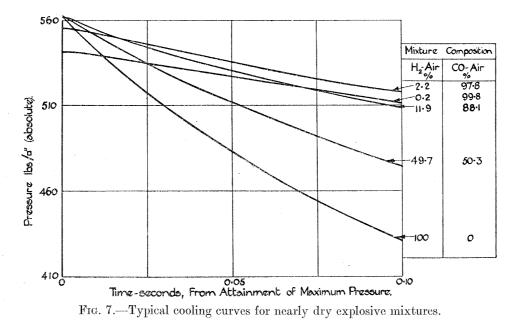
Just over 2 per cent. of H_2 -air in the mixture reduces the explosion time from about 0.26 seconds to 0.1 seconds, and 4 per cent. reduces it to 0.076 seconds. With the latter percentage Prof. BONE, working at an initial pressure of 50 atmospheres and at atmospheric temperature, obtained a still greater effect, the explosion time being reduced from 0.18 to 0.03 seconds. Prof. BONE's results are indicated by the dotted curve in fig. 6.

In the present experiments, the "explosion time" for the "dry" CO-air mixture varied considerably. Thus, in Explosions 792-794 (Records 559-561), Table I, and 806 (Record 573), Table II, this interval varied from 0.246 to 0.29. This is probably due to slight variations in the humidity. Explosion 792 took place after a couple of H_2 -air explosions, and it is possible that a trace of water vapour still existed, say, in the mica insulation of the sparking plug and in the joints of the explosion vessel. For each succeeding CO-air explosion the traces of water vapour from such sources would become less, and the explosion time tend to increase, as is the case. Explosion 806 was the first of a new series, and the explosion vessel was probably still drier. Considerable difficulty was experienced in igniting this charge by the "single" spark, the fourth

attempt being successful. After Explosion 814, it was intended to finish the water vapour series with a "dry" CO-air explosion, but as two attempts to fire the charge were without avail, the idea was abandoned. Prof. BONE, in his experiments, mentioned variations in the explosion time of the CO-air mixture and attributed it to slight changes in the hygroscopic state.

(b) Maximum Explosion Pressures.—It is of considerable interest to note that with all "dry" mixtures of H_2 -air and CO-air the maximum explosion pressures are nearly the same and equal to that of the undiluted H_2 -air mixture, whereas the undiluted "dry" CO-air mixture gave a maximum about 4 per cent. lower (vide page 340, on effect of water vapour addition). Prof. BONE,* however, obtained an 8 per cent. higher maximum with the CO-air mixture than with the H_2 -air mixture, mixtures of which the thermal equivalents of the total energy were approximately the same. When comparing his maximum pressures for mixtures of H_2 -air and CO-air (ranging from 390 to 427 atmospheres) the variations in their thermal equivalents, due to irregularities in mixture composition, must be borne in mind.

(c) "Cooling" Curves.—Prof. BONE remarked in connection with this high-pressure work :—


- (1) With H_2 -air, cooling commenced almost immediately after the attainment of the maximum pressure.
- (2) With CO-air it was delayed for quite an appreciable time interval thereafter, showing that heat energy was still being liberated long after the maximum temperature had been reached.
- (3) Subsequent cooling after the attainment of maximum pressure was very much slower in the CO-air than in the H_2 -air explosions. In the former not only was there an interval of about 0.05 seconds during which the maximum pressure was fully maintained, but also subsequently the pressure fell at only half the rate it had done in the latter.

The present low-pressure experiments, however, show that the interval during which a constant maximum pressure is maintained is of the order of 0.004 seconds in the case of the dry CO-air mixture, and varies from 0.001 seconds to zero as the percentage of H_2 -air increases.

Typical "cooling" curves have been plotted in fig. 7 in which zero time corresponds to the attainment of maximum pressure (*i.e.*, the cessation of rise).

(II) The Influence of the Addition of Water Vapour to a CO-Air Mixture. (a) "Explosion Time."—In spite of some uncertainty as to the thoroughness of the mixing of the water vapour and CO-air, the results of this series of experiments showed definitely that water vapour additions had a marked influence on the character of the explosion curve. Four of the explosion records, Nos. 573, 580, 578, and 575 are shown

PHILOSOPHICAL TRANSACTIONS

superimposed in fig. 8. The addition of 0.3 volume of water vapour to 100 volumes of comparatively dry CO-air mixture reduced the explosion time from about 0.29 to 0.16 second, whereas an addition of 1.68 volumes was associated with an "explosion time" of about 0.095. The largest quantity of water vapour added was 2.56 volumes per 100 of mixture, but as the charge (at 50° C.) would be saturated by 2.38 volumes, the surplus would not be effective until after combustion had commenced.

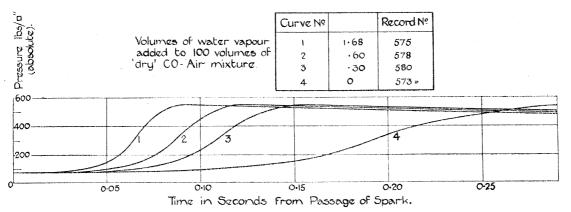


FIG. 8.—Superimposed pressure-time records, showing effect of water-vapour additions to nearly dry CO-air mixture.

(b) Maximum Explosion Pressures.—From the first portion of Table II it will be observed that the addition of 0.3 volume of water vapour results in the maximum pressure being increased by more than 2 per cent., and by doubling this water vapour addition (0.6 volume) a further increase of about 1 per cent. is obtained.

Although water vapour additions varied from 0.3 to 2.56 (2.38) volumes per 100 of

nearly dry CO-air mixture, the maximum explosion pressures show less than 1 per cent. variation, the decrease in the thermal equivalent of the mixture being apparently largely counteracted by other effects.

(c) "Cooling" Curves.—From figures given in Table II it will be observed that the pressure drop during 1/10 second from the attainment of maximum pressure varies from 29 lbs. per square inch for the "dry" CO-air mixture to 40 lbs. per square inch for the mixture containing about 1.7 per cent. of water vapour and 42 lbs. per square inch for 2.6 per cent. The presence of water vapour leads to an increase in the apparent rate of cooling.

(d) Identical Explosion Records.—In comparing the pressure-time curves it was of interest to discover that almost identical explosion records were produced by :—

- (1) The addition of $1 \cdot 21$ volumes of water vapour to 100 volumes of nearly dry CO-air mixture (Record 577, Table II).
- (2) The addition of $2 \cdot 1$ per cent. of nearly dry H₂-air to nearly dry CO-air (Record 582, Table II).

For convenience of comparison, these records are shown superimposed in fig. 9, the

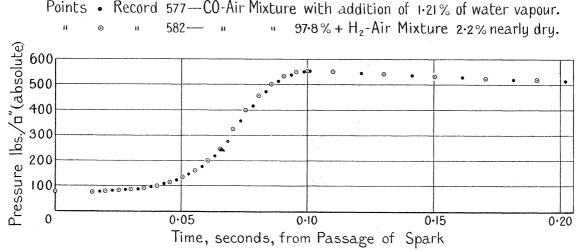


Fig. 9.—Superimposed pressure-time explosion records.

plain points applying to Record 577 and the encircled points to Record 582. If no nitrogen compounds were formed during combustion the composition of the products in the two cases would be :---

	CO_2	H_2O	N_2
	per cent.	per cent.	per cent.
$(1) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	$33 \cdot 98$	$1 \cdot 46$	$64 \cdot 56$
$(2) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	$33 \cdot 76$	$0\cdot 76$	$65 \cdot 48$

The charge masses are slightly different.

2 z 2

(III) The Effect of a Constant Water Vapour Addition to CO-Air and H_2 -Air and Mixtures of These.—In this series about 1.23 volumes of water vapour were added to each 100 volumes of "dry" mixture, giving a humidity corresponding to atmospheric air saturated at 10° C.

(a) Explosion Time.—In the plotted observations in fig. 10 it will be noticed that the

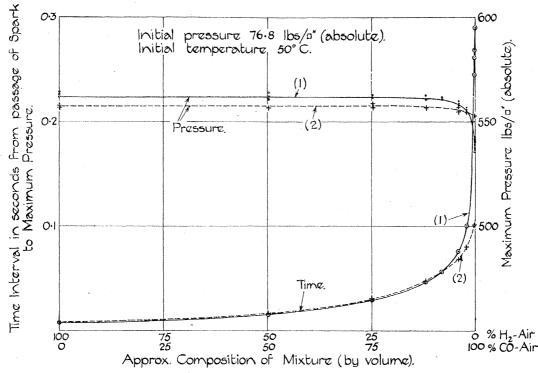
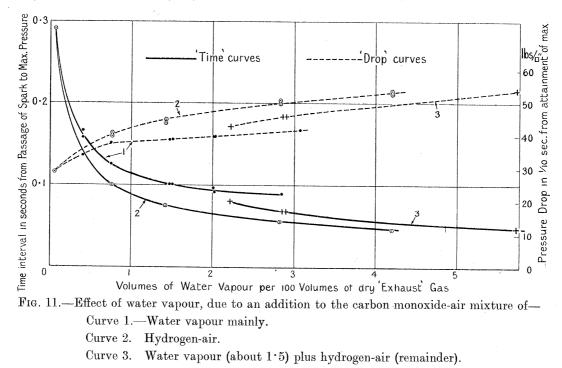


FIG. 10.—Carbon monoxide-air and hydrogen-air mixtures. (1) dry; (2) with about 1 2 per cent. of. water vapour.

"explosion time" is reduced by the water vapour addition when the mixture contains less than 8 per cent. of H_2 -air, but slightly increased for greater percentages. In recent experiments the usual effect of slight water vapour additions to air-hexane, air-benzene and air-methane mixtures has been found to be a slight increase in the explosion time and a slight reduction in the maximum explosion pressure.

(b) Maximum Explosion Pressures.—Referring again to fig. 10, the addition of the given quantity of water vapour reduces the maximum pressure by slightly under 1 per cent. for all H_2 -air CO-air mixtures in which the H_2 -air exceeds about 8 per cent.; below 8 per cent. the reduction decreases until with a 2 per cent. H_2 -air addition the "dry" and "wet" mixtures give the same maximum. Below 2 per cent. the "wet" mixture gives a higher maximum, as previously noted in connection with CO-air water vapour series.

(c) "Cooling" Curves.—Comparing the "cooling" curves for the "wet" and "dry" mixtures, the addition of water vapour sets up :—


(1) An increase in the apparent rate of cooling for mixtures containing 2 per cent. of H_2 -air.

- (2) A lesser increase when the H_2 -air percentage is 4.
- (3) A very slight increase when the percentage is 12.
- (4) No appreciable effect when the H_2 -air percentage is 25 or more.

Roughly, where the maximum pressure curves in fig. 10 are parallel, the water vapour addition has no effect on the rate of cooling, but from the point where they commence to converge the effect increases. In other words, where the "wet" mixture maximum pressure exceeds about 99 per cent. of the dry mixture maximum the rate of cooling is affected. Were it not for large variations in the explosion time in this region it might be concluded that more chemical energy had been converted into heat energy at the " start " of cooling.

(IV) Comparison of Water Vapour Effects when the Water Vapour was (1) directly added, (2) produced by the combustion of H_2 -Air.—The experiments already detailed allow a comparison to be made as to the influence of the water vapour when due to (1) the direct addition of water vapour to the "dry" CO-air mixture, and (2) the addition of H_2 -air to the dry CO-air mixture.

The composition of the dry combustion products (exhaust gas) will not be quite the same in the two cases, owing to the introduction of nitrogen in the H_2 -air, but the difference in composition is not sufficient to have much effect on the specific heat. For the curves plotted in fig. 11, therefore, the dry "exhaust gas " is of constant composition in curves (1), but varies slightly in the case of curves (2) and (3).

Referring to fig. 11, the "explosion time" curves indicate that the shortening of that interval due to the addition of H_2 -air is greater than that due to the direct addition

PHILOSOPHICAL TRANSACTIONS

of water vapour for the same water content of the products. That is, the H_2 -air has a greater effect than that due to its yield of water vapour.

As to the pressure drop in 1/10 second after the attainment of maximum pressure, it will be observed that for the same water vapour content in the "exhaust gas" the drop was considerably greater in the case of the H₂-air addition than when the water vapour was directly added.

PART II.—METHANE-AIR EXPLOSIONS IN A CLOSED VESSEL OVER A WIDE RANGE OF INITIAL TEMPERATURE AND PRESSURE.

In these experiments on mixtures of Methane and Air, the effect of variations in the fuel-air ratio was first examined, the explosions being carried out at a constant initial temperature of 100° C. and a constant initial pressure of 95 lbs. per square inch (absolute).

This was followed by a series of experiments at initial temperatures varying from atmospheric to 400° C., and at initial pressures ranging from 30 to 171 lbs. per square inch (absolute), the mixture ratio being maintained constant.

Apparatus and Experimental Procedure.—The apparatus has already been described in Part I. The methane was obtained from South Wales, and proved to be exceptionally pure for a natural product. From analyses made in a Macfarlane and Caldwell apparatus using an explosion vessel, the composition was estimated to be :—

Per cent.

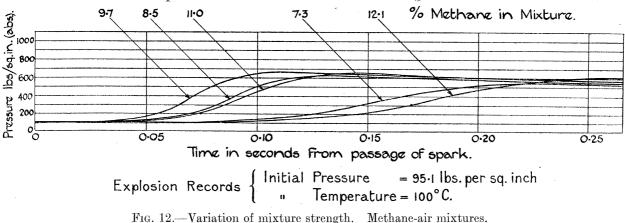
	CH_4		• •	• •	••	•••		$98 \cdot 1$
	CO_2		••	• • .	° a 🔹	•••	• •	$0 \cdot 6$
	CO	••	•••	• •	• •	••		$0\cdot 2$
	H_{2}		• •			••	••	$0 \cdot 0$
	O_2	• •	• •	• •		• •	1 • •	$0 \cdot 0$
Residue, assumed to be	${ m e~N_2}$	• •		• •			· ·	$1 \cdot 1$
								100.0

The mixture was prepared (in bulk) from highly compressed air and compressed methane, and was therefore comparatively dry. The air-fuel ratio was usually determined from the subsequent analysis of a sample of the mixture, but in one or two cases where such determinations were lacking or were obviously incorrect, other means, such as calculation from mixing pressures, were employed.

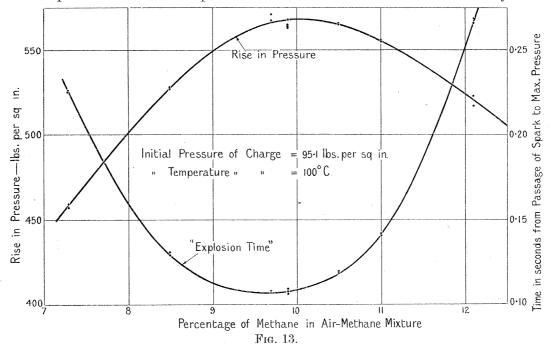
In the experiments in which products of combustion (exhaust gas) were added to the mixture, the procedure was to retain in the explosion vessel the desired quantity of combustion products of the previous explosion and to add to these products the

fresh mixture. No mechanical stirring was provided for thoroughly mixing the exhaust gas and the new charge, but from two consecutive explosions (Records 486A and 486B, Table V), in which the same percentage of exhaust gas was added, the results were so similar as to suggest satisfactory mixing rather than very consistent stratification. In this connection it should be noted that, owing to the high water vapour content in the combustion products, there will be a tendency in the high-pressure experiments at 100° C. for slight condensation to persist on the internal surface of the explosion vessel when the final temperature (of, say, 102 or 103° C.) is reached. As the exhaust gas is discharged this water will evaporate, and thus slightly increase the water vapour content of the residual exhaust that is retained for diluting the new charge. The effect is small and occurs only in the 100° C. series at the initial pressure of 95 lbs. per square inch.

As already explained, the prepared air-methane mixture was comparatively dry, and in order to make certain that the practical absence of water vapour was not leading to incorrect conclusions from the internal-combustion engine standpoint, a small quantity---about $1\cdot 3$ per cent. by volume---of water vapour was added in some cases, as shown in the tabulated results. The water vapour was introduced by the method described in Part I.


Experimental Results.

(1) The Effect of Variations in the Air-fuel Ratio at Constant Initial Pressure and Temperature.—In this series explosions were carried out at an initial pressure of about 95 lbs. per square inch (absolute) and at an initial temperature of 100° C. for a range of airmethane mixtures in which the percentage of the latter constituent varied from $12 \cdot 1$ per cent. to $7 \cdot 3$ per cent. It was intended to start the series with a richer mixture ; but the one prepared, containing about $13 \cdot 2$ per cent. of methane, failed to ignite under the action of the single spark, and it was only after the primary "make-and-break" had been agitated possibly a hundred times that an explosion, with a very long "explosion time," was observed to take place.


On the weak mixture side it was noticed that combustion products containing free oxygen smelt strongly of nitric acid, and their analysis gave a smaller percentage of O_2 than that computed, or than that given by explosions of the mixture in a small glass explosion vessel. Further, the composition of the products of combustion of strong mixtures varied with the size of the explosion vessel: thus the analysis (A) below applies to an explosion of a $9 \cdot 9$ per cent. mixture at an initial temperature of 100° C. in the large steel explosion vessel, whereas (B) applies to a similar mixture exploded in a small glass explosion vessel at atmospheric temperature.

								CO_2	CO	С	$H_{\rm H}$	2
							p	er cent.	per e	cent.	per c	ent.
(A)	•	•			•	•	•	$10 \cdot 8$	1	$\cdot 2$	$1 \cdot$	0
(B)		•	•	•				$10 \cdot 5$	1	$\cdot 65$	0 ·	7

The results of this series, and of some experiments carried out later, are set out in Table III, and some pressure-time records are shown in fig. 12.

From the pressure-time records of fig. 12 and the curves of fig. 13, the relation of the maximum pressure and the "explosion time" to the air-fuel ratio can readily be seen.

Mixtures containing from $9 \cdot 7$ to $10 \cdot 5$ per cent. of CH_4 give sensibly the same pressure rise on explosion, whereas the explosion time is a minimum in the region of the $9 \cdot 7$ per cent. mixture. A "complete combustion" mixture would contain nearly $9 \cdot 5$ per cent. of methane.

(2) The Effect of Variations in the Initial Temperature and the Initial Pressure at Constant Mixture Ratio.—In this series of experiments the initial temperatures were varied from atmospheric to 400° C., and at each temperature the charge density was varied over the range corresponding to 2 to 5 atmospheres at 15° C. The mixture contained about $9 \cdot 9$ per cent. of methane throughout. The range of initial temperature is limited by the ignition of the charge by the *heated* walls of the explosion vessel. The

upper temperature of 400° C. is the highest initial temperature so far attained; it compares with 300° C. for hydrogen* and for benzene, and 230° C. for hexane and for petrol.† It must be noted, however, that at this upper temperature of 400° C. there was a continual creep of the indicator zero, rendering calibrations and pressure determinations liable to inaccuracy. The effect of diluting the mixture with about 6 per cent. of exhaust gas and about 1.2per cent. of water vapour was examined for initial temperatures of 100° C. and above.

The results of the experiments are given in Tables IV, V and VI. As before, the maximum temperatures have been computed on the assumption that :---

Max. temp. (abs.) = $\frac{\text{initial temp. (abs.)} \times \text{max. pressure}}{\text{volume ratio} \times \text{initial pressure}}$.

The volume ratio was found by experiment to be 1.007.

In fig. 14 a number of the pressure-time records have been reproduced.

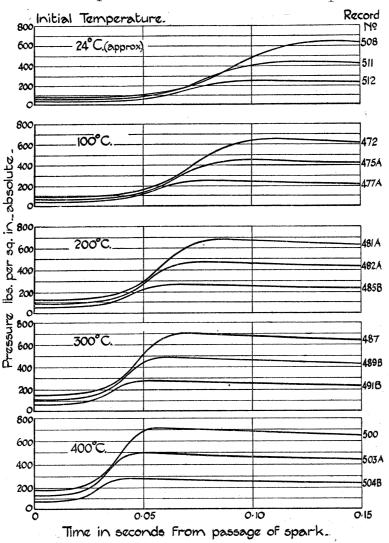


FIG. 14.-Explosion records. Variation of initial pressure and temperature. 9.9 per cent. methane.

* "Air Hydrogen Explosions in Closed Vessels," 'Aeronautical Research Committee,' R. & M. 902.
† "Closed Vessel Explosions," 'Aeronautical Research Committee,' R. & M. 979.

VOL. CCXXV.---A.

PHILOSOPHICAL TRANSACTIONS

From figs. 15 and 16 and Tables IV, V and VI, it will be observed that the "explosion time," *i.e.*, the interval from the passage of spark to the attainment of maximum pressure,

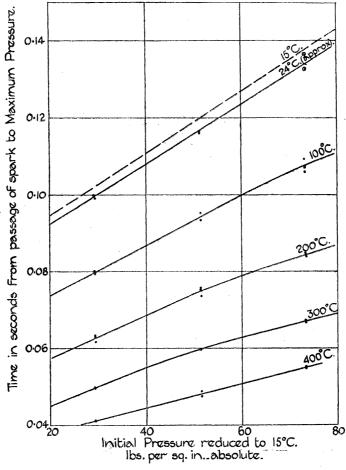


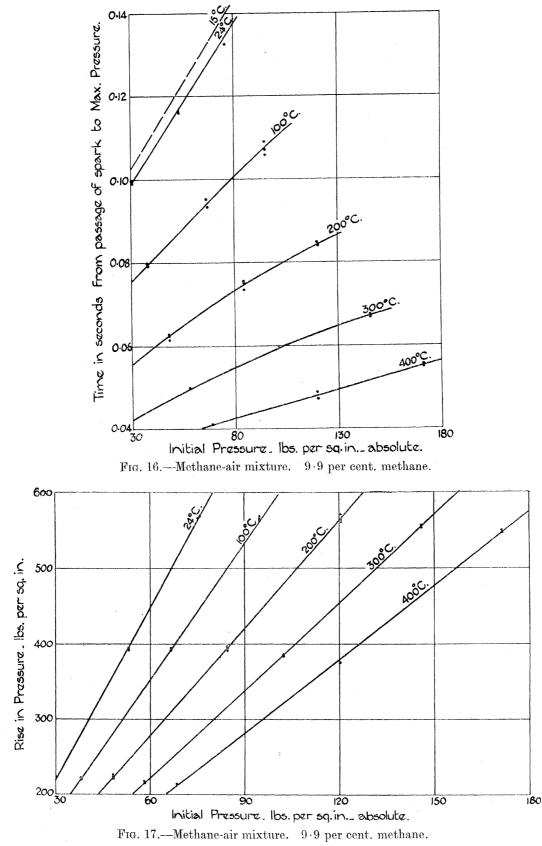
FIG. 15.—Methane-air mixture. 9.9 per cent. methane.

is increased by (1) increasing the charge density, (2) decreasing the initial temperature, (3) adding a diluent such as water vapour or combustion products. In fig. 15 the "explosion" times have been plotted on what is equivalent to a density base (*i.e.*, initial pressure reduced to 15° C.), whereas in fig. 16 a pressure base has been adopted.

The relation of "rise of pressure" on explosion to initial pressure is shown in fig. 17, and the following figures, which are the means of those given in the Tables, show the relation of pressure rise to density at the initial temperatures stated :—

Initial pressure reduced to	Av	erage rise of pre	ssure at initial t	emperatures giv	en.
15° C.	24° C.	100°C.	200° C.	300° C.	400° C.
$73 \cdot 4$ $51 \cdot 4$ $29 \cdot 3$	568 394 222	$565 \\ 394 \\ 222$	$565 \\ 394 \\ 223$	$554 \\ 385 \\ 216$	$547 \\ 375 \\ 213$

EERING


MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

PHILOSOPHICAL THE ROYAL TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

MR. R. W. FENNING ON GASEOUS COMBUSTION AT MEDIUM PRESSURES. 349

3 A 2

The variation of specific heat with temperature is apparently masked by other factors. As to the effect of diluting the mixture by the addition of $6\cdot 3$ volumes of combustion products per 100 of air-methane, it will be found, on plotting, that the pressure rise given by the diluted mixture is $94\cdot 5$ per cent. of that given by the undiluted. The percentage of air-methane contained in the former mixture is $94\cdot 1$ per cent.

For facilities for carrying out the work a tribute of thanks is paid to Dr. T. E. STANTON, Superintendent of the Engineering Department. The writer's thanks are also due to Mr. F. T. COTTON, of the Staff of the Engineering Department, for his careful help throughout. Grateful acknowledgment is made of the encouragement received from Sir JOSEPH PETAVEL and Mr. H. T. TIZARD, and of the latter's unfailing interest and helpful suggestions.

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES	
V _T	
ROYA I E T Y	
THE	
LOSOPHICAL NSACTIONS	
TRA	

MATHEMATICAL, MATHEMATICAL, RENSIGAL RENSACTIONS THE ROYAL SCIENCES SCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

Time intervals.	Commence- ment of rise to maximum. Seconds.	0 • 0056 (0 • 0046) 0 • 0062	$\begin{array}{c} (0 \cdot 00 \text{ o 1}) \\ 0 \cdot 2048 \\ - \\ 0 \cdot 2326 \\ 0 \cdot 2326 \end{array}$	0.0645 0.0659	0.0482 0.0485	0.0383 0.0393	0.0239	0.0123 0.0125	$\begin{array}{c} 0.0059 \\ (0.0049) \\ 0.0058 \end{array}$
Time i	Spark to maximum. Seconds.	0.0072	(0.0064) 0.2457 0.2621 0.2693	$0.0759 \\ 0.0766$	0.0566 0.0564	$0.0465 \\ 0.0468$	0.0293	0.0155 0.0157	$\begin{array}{c} 0.0075\\ (0.0065)\\ 0.0074\end{array}$
atures losion iel.	Rise.	2450 2445	2345 2350 2340	2430 2430	2445 2440	2450 2450	2450	$2450 \\ 2440$	2450 2440
Temperatures in explosion vessel.	Approxi- mate maxi- mum.* °C.	2500 2495	2395 2400 2390	2480 2480	2495 2490	2500 2500	2500	2500 2490	2500 2490
	Rise Initial at15°C.	7.09	$6.79 \\ 6.80 \\ 6.77$	7 · 04 7 · 04	7.08	60· <i>1</i>	60.7	7.10 7.07	7.10 7.07
ssel.	Pressure 1/10 sec. after maxi- mum, lbs. per sq. inch (Abs.).	430	512 513 510	514 516	512 510	508 508	495	475 473	430 430
Pressures in explosion vessel.	Rise, lbs. per sq. inch.	486 (483) 485	(1 84) 465 466 464	482 483	485 484	486 486	486	487 485	487 (484) 485
ires in ex	Maxi- mum pressure, lbs. per sq. inch (Abs.).	563 (560) 562 562	542 543 543 541 541 541 541 541 541 541 541 541 541	559 560	562 561	563 563	563	564 562	564 (561) 562
Pressu	Initial reduced to 15° C., lbs. per sq. inch (Abs.).	68•5 68•5	68 • 5 68 • 5 68 • 5	68 • 5 68 • 6	68 5 68 5 5	68•5 68•5	68.5	68•6 68•6	68•6 68•6
	Initial pressure, lbs. per sq. inch (Abs.).	<pre>76.8 76.8 76.8</pre>	76.8 76.8 76.8	6.92 }	{ 76.8 76.8	ر 76.8 76.8	76.8	6.91 76.9	$\left\{\begin{array}{c} 76.9\\ 76.9\end{array}\right\}$
	CO ₂ .	0.1	0.05	$0 \cdot 1$	$0 \cdot 1$	$1 \cdot 0$	$0 \cdot 1$	$0 \cdot 1$	0.1
mixture olume.	\mathbf{N}_{2} .	55.9	56.0	55.9	55.9	55-95	55.9	55-95	55.9
omposition of mixtur per cent. by volume.	0.2.	14.65	14.6	14-6	14.6	$14 \cdot 6$	14.6	14.6	14.65
Composition of mixture, per cent. by volume.	H 	29.35	0.05	1.2	2.35	3.50	7.3	14.6	29.35
	CO.	0	29.3	28.2	27.05	25.85	$22 \cdot 1$	14.75	0
Per cent. of	H_2 -air in mix- ture (remain- der CO- air) approx.	100	$0\cdot 2$	4 ·1	8.0	11.9	24.8	49.7	100
	Record number.	557 558	559 560 561	562 563	564 565	566 567 }	568	569 570 }	571 }

MR. R. W. FENNING ON GASEOUS COMBUSTION AT MEDIUM PRESSURES. 351

* Assuming maximum temperature (abs.) = initial temperature (abs.) × $\frac{\text{maximum pressure}}{\text{initial pressure}} \times \frac{100}{85 \cdot 4}$.

THE ROYAL SOCIETY **PHILOSOPHICAL TRANSACTIONS** 0

TRANSACTIONS COLLECTOR SOCIETY ЧO MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

 \triangleleft

 $0.1358 \\ 0.0773$ 0.08500.08600.0709 $0.0574 \\ 0.0584$ $\begin{array}{c} 0.0801\\ 0.0765\\ 0.0859 \end{array}$ $\begin{array}{c} 0\,\cdot 0\,234\\ 0\,\cdot 0\,242\\ 0\,\cdot 0\,242 \end{array}$ $\begin{array}{c} 0\,{\cdot}0127\\ 0\,{\cdot}0126\\ 0\,{\cdot}0132 \end{array}$ $\begin{array}{c} 0.0060 \\ 0.0062 \\ 0.0060 \end{array}$ Seconds 0.08320.10560.13820.03910.0385ment of 0.24880.0632rise to mum. mence-0.0387Time intervals. maxi-Commum. Seconds. $\begin{array}{c} 0\,{\color{red}{\cdot}}\,1000\\ 0\,{\color{red}{\cdot}}\,1002\\ 0\,{\color{red}{\cdot}}\,0808\end{array}$ $0.1579 \\ 0.0901$ $0.0470 \\ 0.0475 \\ 0.0475 \\ 0.0473$ $\begin{array}{c} 0.0075 \\ 0.0078 \\ 0.0076 \end{array}$ maxi-0.10150.10100.12590.1663 $\begin{array}{c} 0.0291 \\ 0.0300 \\ 0.0301 \end{array}$ $\begin{array}{c} 0\,\cdot 0151 \\ 0\,\cdot 0156 \\ 0\,\cdot 0160 \end{array}$ 0.09200.07560.06840.0686Spark 0.29020.0970 £ \odot Initial Temperature 50° $2415 \\ 2405$ volume before combustion $2420 \\ 2425 \\ 2405 \\ 2405 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\$ $2415 \\ 2440$ $2445 \\ 2425$ $\begin{array}{c} 2320\\ 22390\\ 22395\\ 22395\\ 22395\\ 23395\\ 23380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\ 2380\\$ 242524402415 $2440 \\ 2415 \\ 2415 \\ 2415 \\$ $2445 \\ 2420$ 2415Temperatures in explosion vessel. Rise. °°. mum.* Approxi maximate $\begin{array}{c} 2470\\ 2475\\ 2455\end{array}$ $2475 \\ 2465 \\ 2455 \\ 2455 \\$ $2495 \\ 2475$ °. $2370 \\ 2440$ 2440244524452445 $\begin{array}{c} 2425 \\ 2430 \\ 2430 \end{array}$ $2490 \\ 2465 \\ 2490 \\ 2490 \\$ 2465 $\begin{array}{c} 2490\\ 2465\\ 2465\\ 2465\end{array}$ $\begin{array}{c} 2495\\ 2470\\ 2465\end{array}$ Initial $\begin{array}{c} 6\cdot70\\ 6\cdot94\\ 6\cdot94\\ 6\cdot95\\ 6\cdot95\\ 6\cdot95\\ 6\cdot94\\ 6\cdot88\\ 6\cdot88\\ 6\cdot82\\ 6\cdot89\\ 6\cdot82\\ 6\cdot82\\$ $7.00 \\ 7.01 \\ 6.98$ at 15°C $7.02 \\ 7.01 \\ 6.98$ 7.087.04 $7.08 \\ 7.02 \\ 7.01$ Rise 7.07 7.01 7.07 7.01 7.01 7-01 Pressure lbs. per 1/10 sec. sq. inch maxi-(Abs.). mum, after 516 515 512 508 503 507 507512512514514514515515509514 511 509 $495 \\ 491 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490 \\ 490$ $472 \\ 469 \\ 468$ $431 \\ 427 \\ 426 \\ 426 \\ 426 \\ 426 \\ 426 \\ 426 \\ 426 \\ 426 \\ 426 \\ 426 \\ 426 \\ 426 \\ 426 \\ 426 \\ 426 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427 \\ 427$ Assuming maximum temperature (abs.) = initial temperature (abs.) $\times \frac{maximum pressure}{\dots}$ II.--Carbon Monoxide Air, Water Vapour, Hydrogen-Air Mixtures. Pressures in explosion vessel. lbs. per sq. inch. Rise. $479 \\ 480 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478 \\ 478$ $\begin{array}{c} 459 \\ 475 \\ 475 \\ 476 \\ 476 \\ 476 \\ 471 \\ 471 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\ 472 \\$ $\frac{481}{480}$ $\frac{485}{482}$ $\frac{484}{180}$ $\frac{485}{481}$ sq. inch (Abs.). pressure, lbs. per Maximum 556 557 555 558 557 555 561 557 561 552 559 557 561 557 557 562 558 557 pressure, to 15° C., lbs. per sq. inch (Abs.). Initial reduced 68 • 5 68 • 5 68 • 5 68 • 5 68 • 5 68 • 5 68 • 5 68 • 5 68 • 5 68 • 5 68 • 5 68 • 5 68 • 5 68 • 5 68 • 5 68 • 5 68 • 5 68 • 5 Ibs. per sq. inch (Abs.). Initial 76.876.876.876-8 76-8 76-8 $\begin{array}{c} 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\ 76.8\\$ $\begin{array}{c} 76\cdot8\\ 76\cdot8\\ 76\cdot8\\ 76\cdot8\end{array}$ 76-8 76-8 76-8 76.876.876.876.8 76.8 76.8 Volumes $\begin{array}{c} 1.67\\ 1.68\\ 1.68\\ 1.24\\ 1.24\\ 1.21\\ 0.60\\ 0.30\\ 0.30\\ 2.56\\ 2.56\\ (2\cdot38)\end{array}$ of water volumes added per 100 mixture. Vapour $\begin{array}{c} 1 \cdot 24 \\ 1 \cdot 21 \\ 1 \cdot 21 \end{array}$ $\begin{bmatrix} 1 \cdot 23 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 0\\ 1 \cdot 24\\ 0 \end{bmatrix}$ $\begin{smallmatrix} 1.23\\ 1.23\\ 1.23 \end{smallmatrix}$ of 0 CO_2 . 0.1 1.0 0.10.1 0.051.0 0.1 55.85 55.95 Composition of mixture, 55.85 55.95 $55 \cdot 90$ 55.955.9per cent. by volume. N. 14.6514.6514.714.714.7 14.7 14.7 0_2 . 3.45 $7 \cdot 25$ 14.629.40.050.65Н₂. 1.2 85 28.722.014.729.328.1TABLE CO. 25. $^{\circ}$ Per | * der CO-air) in mixremainapprox. H₂-air ture 11.824.849.80.22.24.1 100 Record number. 588 589 590 591 592 593 594 595 596 585 586 587 597 598 599 582583584

MR R. W. FENNING ON GASEOUS COMBUSTION AT MEDIUM PRESSURES. 352

volume after combustion

X

initial pressure

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES	
THE ROYAL A SOCIETY	
PHILOSOPHICAL TRANSACTIONS	

TABLE III.—Effect of Variations in Mixture Strength. Air-Methane Mixtures.

	H H H H H	Approxi- mate		G	Partial analysis of	÷		-	ressures	ın explosi	Pressures in explosion vessel.	_		ø	Time 1	Time intervals.
Record number.	con tio mix part volt	composi- tion of mixture parts by volume.	Volumes of diluent added per 100 volumes of	com com	conducts of products of combustion.	b. ii	Initial Ibs. per	Initial reduced to 15°C		Rise,	1/10 sec. after maxi-	Maxi-	Rise	Initial tem- pera- ture of	Spark to maxi-	Com- mence- ment of rise to
	CH4.	Air.*	aur-methane mixture.	CO ₂ per cent.	O ₂ per cent.	CO per cent.	sq. ihch (Abs.).		lbs. per sq. inch (Abs.).	lbs. per sq. inch.	mum Ibs. per sq. inch (Abs.).	<u>Initial.</u>	Initial at 15°C.	charge. °C.	പര	maxi- mum pressure. Seconds
448 449	12.1	87.9		7.2 7.2	0.0	6.5 6.4	95 · 1 95 · 1	73•4 73•4	618 612	523 517	561 557	$6.50 \\ 6.43$	7.13 7.04	100	$0.2659 \\ 0.2683$	0.2266 0.2265
$\left.\begin{array}{c}450\\451\\452\\452\\453\end{array}\right)$	11.0	89.0	$\begin{cases} & - \\ 1 \cdot 2 \text{ steam} \\ 1 \cdot 1 \text{ steam} \\ \dots \\ $	8.8 8.9 8.8 8.8	0000	4 4 4 4 4 4 1 - 1 - 2 - 2 - 1 - 2	$95 \cdot 2$ $95 \cdot 2$ $95 \cdot 1$ $95 \cdot 1$	73.5 73.5 73.4 73.4 73.4	651 650 639 637	556 555 544 542	579 578 570 568	6.84 6.83 6.72 6.70	7.56 7.55 7.41 7.38	$100 \\ 100 $	$\begin{array}{c} 0\cdot 1406\\ 0\cdot 1419\\ 0\cdot 1538\\ 0\cdot 1509\end{array}$	$\begin{array}{c} 0.1222\\ 0.1229\\ 0.1229\\ 0.1375\\ 0.1311\end{array}$
$\left.\begin{array}{c}460\\461\\462\\462\\463\end{array}\right)$	10.5	89.5	$\begin{cases} - \\ 6 \cdot 4 \text{ "exhaust "} \\ 1 \cdot 2 \text{ steam } \cdots \end{cases}$	7.6 7.6	0 0 0	$\begin{array}{c c} 2.9 \\ 2.9 \\ 2.9 \\ 2.9 \end{array}$	$95 \cdot 2$ $95 \cdot 2$ $95 \cdot 2$ $95 \cdot 2$	73.5 73.5 73.5 73.5	661 660 617 647	566 565 552 552	585 583 556 576	$6.94 \\ 6.93 \\ 6.48 \\ 6.80 \\ 6.80$	7.70 7.69 7.10 7.51	$\begin{smallmatrix}100\\100\\100\\100\end{smallmatrix}$	$\begin{array}{c} 0 \cdot 1193 \\ 0 \cdot 1180 \\ 0 \cdot 1729 \\ 0 \cdot 1289 \end{array}$	$\begin{array}{c} 0 \cdot 1031 \\ 0 \cdot 1011 \\ 0 \cdot 1477 \\ 0 \cdot 1477 \\ 0 \cdot 1101 \end{array}$
$\left. \begin{array}{c} 472\\ 473 \\ 473 \\ 473 \\ 474 \end{array} \right)$	6.6	1.06	6.3" exhaust" 1.3 steam	$10.7 \\ \\ 10.8 \\ 10.8 \\ 10.8 \\$	0 00	$1.0 \\ 1.1 \\ 1.0 \\ 1.0$	95 •0 95 •0 95 •0 95 •0	$73 \cdot 3$ $73 \cdot 3$ $73 \cdot 3$ $73 \cdot 3$	658 660 652 650	563 565 555 555	583 585 578 578	6.93 6.95 6.55 6.84	7.68 7.71 7.19 7.57	100 100 100 100	$\begin{array}{c} 0.1069\\ 0.1090\\ 0.1533\\ 0.1193\end{array}$	$\begin{array}{c} 0.0916\\ 0.0918\\ 0.1313\\ 0.1313\\ 0.1007\end{array}$
495	6.6	$90 \cdot 1$	l	10.8	0	1.2	$95 \cdot 0$	73.3	663	568	591	$6 \cdot 98$	7.75	100	$0 \cdot 1058$	0 • 0917
506 507	6.6	90.1		$\begin{array}{c} 10.8\\ 10.8\\ \end{array}$	00	1.3	95 • 1 95 • 1	73•4 73•4	659 660	564 565	589 590	$\begin{array}{c} 6\cdot93\\ 6\cdot94\end{array}$	7.68 7.70	$100 \\ 100$	$0.1072 \\ 0.1071$	0.0909 0.0909
$\left. \begin{array}{c} 454 \\ 455 \end{array} \right\}$	2.6	90.3		$11.2 \\ 11.2 \\ 11.2$	00	$\begin{array}{c} 0.4 \\ 0.5 \end{array}$	95•1 95•1	73•4 73•4	666 662	571 567	594 588	7.00 6.96	7.78 7.72	$100 \\ 100$	0.1065 0.1077	0.0917 0.0930
456 457 }	8.5	91.5		10•4 10•4	5.0 70 70	00	95.2 95.2	73·5 73·5	623 622	528 527	559 559	$\begin{array}{c} 6\cdot 54\\ 6\cdot 53\end{array}$	7.18 7.17	$100 \\ 100$	$\begin{array}{c} 0.1288 \\ 0.1306 \end{array}$	$0.1091 \\ 0.1101$
$\left. \begin{array}{c} 458\\ 459 \end{array} \right\}$	7.3	92.7		8.8 7.8	4.8 4.9	00	95•0 95•1	73•3 73•4	558 554	457 459	506 507	5 • 81 5 • 83	6.23 6.25	$100 \\ 100$	$\begin{array}{c} 0\cdot 2259\\ 0\cdot 2256\end{array}$	0.1957 0.1918

MR. R. W. FENNING ON GASEOUS COMBUSTION AT MEDIUM PRESSURES.

353

TRANSACTIONS SOCIETY

TRANSACTIONS COLLECTOR ЧO

SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES TRANSACTIONS COLLECTIONS SOCIETY 0

pressure. Seconds. $6060 \cdot 0$ $2060 \cdot 0$ ment of 0.0956 $0.0916 \\ 0.0918$ $0.1313 \\ 0.1007$ 0.0773 $0.1154 \\ 0.1126$ 0.0778 0.1108maxi-0.09630.08850.0614Commencerise to mum 0.08120.06160.07310.09170.0851Time intervals. pressure. Seconds. $\begin{array}{c} 0\,\cdot 1364 \\ 0\,\cdot 1325 \\ 0\,\cdot 1160 \end{array}$ $0.0997 \\ 0.0997 \\ 0.0990$ $\begin{array}{c} 0\,{\cdot}\,1072 \\ 0\,{\cdot}\,1071 \end{array}$ $\begin{array}{c} 0\cdot 1069\\ 0\cdot 1090\end{array}$ $\begin{array}{c} 0\,\cdot\,1\,5\,33\\ 0\,\cdot\,1\,1\,93\\ 0\,\cdot\,0\,950\end{array}$ 0.09330.13160.10470.0795 $0.0798 \\ 0.1070$ Spark 0.0871mum 0.1058maxi- $_{\mathrm{to}}$ Approxi-Approximate $\begin{array}{c} 2200\\ 2210\\ 2195\\ 2190\\ 2155\\ 2155 \end{array}$ $\begin{array}{c} 2130\\ 22200\\ 22050\\ 22160\\ 2115\\ 2145\\ 2135\\ 2115\\ 22145\\ 22145\\ 22130\\ 2230\\ 2030\\$ 2215 $2195 \\ 2195$ Air-Methane (9.9 per cent.) Mixture. °C. Temperatures in explosion vessel. maxi-mum. °C. mate $\begin{array}{c} 2225\\ 2235\\ 2220\\ 2220\\ 2215\\ 2185\\ 2180\\ 2180\\ 2180 \end{array}$ $\begin{array}{c} 22290\\ 22500\\ 22500\\ 22260\\ 22260\\ 22280\\ 2140\\ 22255\\ 22555\\ 22255\\ 225555\\ 225555\\ 225555\\ 225555\\ 22555\\ 22555\\ 22555\\ 22555\\ 22555\\$ 2315 $2295 \\ 2295$ $\begin{array}{c} 22\cdot 9\\ 224\cdot 2\\ 25\cdot 3\\ 224\cdot 6\\ 224\cdot 7\\ 224\cdot 3\\ 224\cdot 3\end{array}$ Initial. 100 $100 \\ 100$ °. Initial 7.71 7.73 7.68 7.66 $_{15^{\circ}}^{\mathrm{at}}$ C. $7.58 \\ 7.55$ ·65 ·13 7.527.1121.75 7.70 89.7 7.197.577.637.497 · 51 $\cdot 55$ Rise lbs. per sq. inch (Abs.). Pressure 1/10 sec.after maximum 575575388388388209209 $\begin{array}{c} 583\\ 585\\ 5585\\ 5585\\ 5589\\ 398\\ 398\\ 399\\ 379\\ 379\\ 379\\ 2215\\ 2212\\ 2214\\ 2212\\ 2214\\ 2215\\ 2214\\ 2215\\ 2214\\ 2215\\ 2214\\ 2215\\ 2214\\ 2215\\ 2$ 589 590 591 Pressures in explosion vessel lbs. per Rise. sq.inch. 565 567567568394393393393222222222568 TABLE IV.—Variation in Initial Temperature and Pressure. lbs. per sq. inch (Åbs.). Maximum $\begin{array}{c} 642 \\ 644 \\ 644 \\ 744 \\ 252 \\$ 659 660 663 to 15°C., lbs. per sq. inch (Abs.). reduced Initial 73.373•4 73•4 $\begin{array}{c} 73\cdot 5\\ 73\cdot 5\\ 51\cdot 3\\ 51\cdot 3\\ 51\cdot 3\\ 51\cdot 3\\ 229\cdot 3\\ 229\cdot 3\\ 229\cdot 3\\ 229\cdot 3\\ 229\cdot 4\\ 229\cdot 4\\ 229\cdot 3\\ 229\cdot 4\\ 229\cdot 3\\ 229\cdot 4\\ 229\cdot 4\\ 229\cdot 3\\ 229\cdot 4\\ 229\cdot$ lbs. per sq. inch (Abs.). Initial 75.5 75.8 53.1 53.0 30.3 30.3 95 • 1 95 • 1 95.0 95.0 95.0 2.992.9966.7 66.7 38.1 38.1 38.1 38.1 38.1 $95 \cdot 0$ $1\cdot 2 (h)$ 1.3 1.0.2 $0 \cdot I$ per cent. I.I CO analysis of cooled combustion. products Partial per cent. of $^{\circ}$ 0 0 00 000 0 0 000 10.8 $\frac{10\cdot8}{10\cdot8}$ $\begin{array}{c}10.7\\10.7\\10.8\end{array}$ 10.710.7 $\begin{array}{c}10.8\\10.8\\10.8\end{array}$ 10.8CO₂ per cent. 6.3 " exhaust " 1.3 H₂O … 6.3" exhaust" : 6.2 " exhaust " added per 100 air-methane volumes of Volumes of diluent mixture. $1 \cdot 3 \operatorname{H}_{2}O$ $1 \cdot 3 \operatorname{H}_{2}O$ 1 Air.* $90 \cdot 1$ $1 \cdot 06$ $90 \cdot 1$ $1 \cdot 06$ Composi-tion of mixture parts by volume. 6.6 $6 \cdot 6$ 6.6 6.6CH4. ~ Record number. 472 472 4738 4738 4758 4758 4758 4758 4768 4778 4778 4778 4778 4778 508 510 513 513 513 506 507 495

354MR. R. W. FENNING ON GASEOUS COMBUSTION AT MEDIUM PRESSURES.

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

	Composi-	-iso		8	Partial analysis of	of		Pre	ssures in ϵ	Pressures in explosion vessel.	ressel.		Te	Temperatures in explosion vessel.	es in ssel.	Time i	Time intervals.
Record	tion of mixture parts by volume.	l of ture s by me.	Volumes of diluent added per 100 volumes of air-methane	CO I	cooled products of combustion.	s .u	Initial lbs. per	Initial reduced to 15°C	Maxi- mum	Rise,	Pressure 1/10 sec. after maxi-	Rise Initial	Initial.	Approxi- mate	Approxi- mate	Spark to maxi-	Com- mence- ment of rise to
	CH_4 .	Air.*	mixture.	CO ₂ per cent.	O_2 per cent.	CO per cent.	sq. inch (Abs.).		10s. per sq. inch (Abs.).	los. per sq. inch.		at 15° C.	°C,	maxı- mum. °C.	rise. °C.	mum pressure. Seconds.	maxi- mum pressure Seconds
480A 480B 481A			$\begin{bmatrix} 1.3 \text{ H}_2^{-} \\ 1.3 \text{ H}_2^{-} \end{bmatrix}$	$10\cdot9$	00		120.6 120.6 120.6	73.4 73.4 73.4	682 677 684	561 556 556	606 603 613	7.64 7.57 7.67	$200 \\ 200 $	2385 2365 2360	2185 2165 2165	$\begin{array}{c} 0{\bf \cdot}0844\\ 0{\bf \cdot}0929\\ 0{\bf \cdot}0838\end{array}$	$\begin{array}{c} 0.0749 \\ 0.0809 \\ 0.0726 \end{array}$
481 ^B 482			4.9 " exhaust "		0 0	1. I ,	120.6 84.4	73·4 51·4	662 477	541 393	593 416	7.37	500 500	2305 2380 2380	2105	0.1086 0.0750	0.0914
483A 483B 484A	6.6	$90 \cdot 1$	$\left \begin{array}{c} 4 \cdot 7 \text{ "exhaust "} \\ 1 \cdot 3 \text{ H}_2 \text{ 0 } \end{array} \right $	10.8	00		84·4 84·4 84·4	51.4 51.4	475 458 470	$391 \\ 374 \\ 386 \\ 386$	$\begin{array}{c} 415\\ 402\\ 410\end{array}$	7.51 7.51	$ \begin{array}{c} x \\ x \\ x$	$2370 \\ 2245 \\ 2345$	$2170 \\ 2075 \\ 2145$	$\begin{array}{c} 0.0734 \\ 0.0940 \\ 0.0797 \end{array}$	$\begin{array}{c c} 0.0637 \\ 0.0847 \\ 0.0692 \end{array}$
484B 485A 485b			$1 \cdot 4 \operatorname{H_{2}O}$	10.8	•	Ξ I,	48.2 48.2	29.3 29.3	269 267	221 219	225 224 996	7 · 54 7 · 47 7 · 58	500 500 500	2350 2330 9360	2150 2130 9160	0.0615 0.0682	0.0528 0.0576
486A 486B 486B			4.8 " exhaust " 4.8 " exhaust "				48.2 48.2 2 2 2 2	50.3 50.3 50.3	560 560 560	212	219 220	7.24	500	2260 2260	2060 2060	1220·0	0.0612 0.0612 0.0618
496A			6.3" exhaust"	$\begin{array}{c} 10.9\\ 10.9\end{array}$	00	$\frac{1\cdot 2}{1\cdot 1} \stackrel{(h)}{(h)}$		$\frac{73\cdot4}{73\cdot4}$	684 (b) 659	563 (b) 539 539		$7 \cdot 67 (b)$ $7 \cdot 34$	$200 \\ 200 $	$2390 \ (b)$ 2295		$\begin{array}{c c} 2190 & (b) \\ 2095 & 0 \cdot 1183 \\ 0 \cdot 1183 & 0 \cdot 1020 \\ \end{array}$	0.0729(b) 0.1020
497 498a > 498b 498b	9.9	1.06	$\left\{ \begin{array}{c} - \\ 6 \cdot 3 \\ \cdot & \frac{-}{\mathrm{exhaust}} \end{array} \right\}$				120 · 6 84 · 4 88 · 5 88 · 5	73.4 51.4 51.4 90.3	691 481 461 974	570 397 377 996		7.72 7.33 7.33	500 500 500 500 500 500 500 500 500 500	2420 2405 2290 9305	2220 2205 2090	$\begin{array}{c} 0.0843 \\ 0.0754 \\ 0.1019 \\ 0.0696 \end{array}$	$0.0728 \\ 0.0649 \\ 0.0902 \\ 0.0511 \\ 0.0511$
499B			6.3 " exhaust "				48.2	29·3	263	215	223	7.34	200 200	2290	2017 2090	0.0819	0.0654

MR. R. W. FENNING ON GASEOUS COMBUSTION AT MEDIUM PRESSURES. 355

* The volume of air includes impurities introduced with the methane.

Volume ratio determinations—(1) 1.0063(2) 1.0072 Mean 1.007. (3) 1.0072 Mean 1.007.

(b) Abnormal pressure-time record. (h) In this exhaust sample the hydrogen content was determined and found to be $1 \cdot 1$ per cent.

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES TRANSACTIONS SOCIETY

356	M R. R.	W. FENN	ING ON G.	ASEOU	JS (CON	IBU	IST	ION	N A'.	ГМ	1EC	UI	MII	PR	ES	SU	RE	S.	
	Time intervals.	Com- mence- ment of rise to	0.0575	0.0820	0.0648 0.0502	0.0512	0.0550	0.0405	0.0564	0.0446	0.0474	0.0465	0.0507	0.0409	0.0408	0.0470	0.0360))))		
TABLE VI.—Variation in Initial Temperature and Pressure. Air-Methane (9.9 per cent.) Mixture.	Time in	Spark to maxi-	0.0667	0.0923	0.0596	0.0597	0.0643	0.0497	0.0430 0.0674	0.0540	0.0552	0.0548	0.0578	0.0487	0.0473	0.0519	0.0410	,		
	es in ssel.	Approxi- mate rise. °C.		2155 2160	2045	2125 2135	2130 9095	2100	2115	1980	2065	2125	2130	2085	2080	2080	1980	2080		
	Temperatures in explosion vessel.	Approxi- mate maxi- mum. °C.		2455 2460	2345	2420 2435	2430 9995	2400	2415	2390	2365	2525	2530 2405	2485	2480	2480	2380	2480 2480		
		CC.		300 300	300		300		300	00°	300	400	400	400	400	400	400	400		
	Pressures in explosion vessel.	Rise Initial at 15° C.		7.54 7.57	7.16	7.49 7.49	7.47	7.37	7.43	6.95	7.26	7.44	7.03	7.30	7.30	7.30	0.40	7.27	thane.	
		Pressure 1/10 sec. after maxi-	626 627	603	618 426	425 419	420	233	$231 \\ 223$	227	638	642 616	633	433	432	419	237	th the me	~~~~~~	
		Rise. lbs. per sq. inch.		553 555	525	546 385	384	379 379	217	$213 \\ 203 $	212	546	548 516	536 536	375	375	307	213 213	duced wit	
		Maxi- mum lbs. per sq. inch (Åbs.).		669 701	671	$692 \\ 487$	486	401 481	275	273 261	270	718	719 627	708	495	495	411 1 oo	±03 282	ities intro	A TURE COULD
		Initial reduced to 15°C., lbs. per sq. inch (Abs.).		$\frac{73}{23}$	73.3	73·3 51·4	51.4	51.4	29.2	29.2	29.2	73.4	73.4	73.4	51.4	51.4	51.4	7.10 7.10	ir includes impurities introduced with the methane	TCO TITLY
		Initial lbs. per sq. inch. (Abs.).		145.9	145.9	145.9 102.3	$102 \cdot 3$	102.3 102.3	58.2	58.2 58.2	$58 \cdot 2$	171.5	171.5	2·1/1	120.1	$120 \cdot 1$	120.1	1.021	air inclue	. מוד דוועותי
	of		CO per cent.	1.0			, ,		1.0			$6 \cdot 0$	-		1.0	ŀ	1		The volume of a	חווווס עו
	Partial analysis of cooled products of combustion.		0 ² per cent.	0	0	00			0		1	0	<		0		1	and the second se	* The vo	
	ۍ س		CO ₂ per cent.	11.0		0.11.0			10.9		 	11.1	[~	
			6.3 " exhaust "	$1 \cdot 3 H_2 0 \dots $		0.2 exnaust 1.3 H.O	1	6.7 " exhaust "	$\left[1\cdot 3 \text{ H}_2 0 \right]$, T	1.3 H.O	; }, },		6.3 " exhaust	О ² п с.т				
	Composi- tion of mixture parts by volume. H ₄ . Air.*			90.1					90.1											
	Com tior mix parts volu		CH4.	6. 6					6.6											
		Record number.			488B	489A 489B	490a	490B 491A	491B	492A 492B	493	200	501A	502A	502B	503A	503B	504a	(TT))	

Downloaded from rsta.royalsocietypublishing.org